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TECHNICAL MEMORANDUM

ANALYSIS TECHNIQUES FOR RESIDUAL A_TION DATA

I.INTRODUCTION

There are various aspects of observational dam that may be of interest to an
investigator, e.g., mean, variance, and minimum and maximum values. Observational data
such as biomedical data, economic data, seismic data, and accelerometer data are recorded
as either continuous time functions or discrete time series. While statistics such as those

mentioned above can be obtained from data in this form, additional information can often

be obtained by looking at the data from a different perspective, such as can be obtained by
transformation of data into a different domain or into different coordinate axes. Of

particular interest to us is the analysis of residual acceleration data collected in orbiting
space laboratories. A thorough understanding of such data and the ability to manipulate the

data will allow the characterization of orbiters so that investigators can better understand the

results of low-gravity experiments.

Most time functions can be considered as the sum of sinusoidal and co-sinusoidal

terms of various frequencies (all harmonics of some fundamental frequency) and a steady

state term. Spectral or Fourier analysis consists of a transformation of data in the time

domain into the frequency domain in which the relative strengths of the frequency
components of the data can be studied. Although the equations used to perform such
transformations were originally applied to continuous, periodic functions, the theory can be
adapted to the analysis of discrete, aperiodic time series.

The orientation of recording axes can be an important factor in the collection of
observational data. It may be of interest to an investigator to look at data in terms of a set
of axes other than that in which the data were collected. Such analysis is performed by

means of a transformation of coordinate axes in which data in a given system are referred to

in terms of some new set of coordinate axes. A transformation may be useful in the

analysis of multiple experiments conducted in different orientations.

Before any such manipulation can be performed on data, the data must be collected.

Various details associated with the sampling interval used in the acquisition of data and the

window lengths used in the analysis of data are discussed in the next section. The

adaptation of Fourier theory to the analysis of discrete, aperiodic time series is discussed in

the Spectral Analysis section. Also discussed in that section are the power spectral density
function and the application of spectral analysis to residual acceleration data. The

transformation of data from one set of coordinate axes to another by means of a

transformation matrix and how this can be useful in the analysis of low-gravity data are

discussed in the Transformadon of Coordinate Axes section. A symbol nomenclature is

provided in Appendix A, and detailed derivations are included in Appendix B.



H. SAMPLING CONSIDERATIONS AND FREQUENCY LIMITS

In the analysisof observationaldata,certainrestrictionsare imposed by thelength

of the data window being analyzed and by the sampling rate used when digitizing

continuous data, or when collecting discrete data. For a segment of a time series f_., of

length T (N total points), the fundamental period of the segment is assumed to be T, even

though the series is not necessarily periodic, and the lowest frequency represented in

spectral analysis of the segment is 1/T - v_. 1/T also represents the highest resolution

obtainable in spectral analysis of the time series segment, lfr--Vl=AV.

The sampling interval At used in the acquisition of data must be appropriate for the

data-two time intervalsare needed todefineone period. The sampling intervaldetermines

the highest obtainable frequency in spectralcalculations:vN = 1/(2At)= N/(2T), the

Nyquist frequency. Therefore,for a window of a time seriesf_.as describedabove, the

frequency limitsI/'r< v < N/(2T) existfor spectralanalysisof the window.

To avoid aliasing, the contamination of computed spectra by frequencies higher

than v_r (see Bendat and Piersol, 1966, pp. 278-280; Waters, 1981, pp. 121-123),

sampling must be frequent enough (i.e., At small enough) to have at least two sampling

intervals (three sample points) per cycle for the highest frequencies present in a series, not

just the highest frequencies of interest. An investigator must, therefore, have some idea of

the fleXtueney:components that _11-_ p_Sent in a seres bet_0re _ta are collected. Aliasing

problems may also be avoided by appropriate low-pass filtering as part of the data

collection process to remove components of frequency higher than the v N dictated by the

chosen sampling interval.
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Ill. SPECTRAL ANALYSIS OF DISCRETE TIME SERIES

A. Fourier Series and Spectral Analysis - Theory

Spectral analysis consists of the description of a given time function in terms of

sinusoidal components present in the function. Such analysis is performed using theory

developed in part by Joseph Fourier and is referred to as Fourier analysis. According to

Fourier theory, a function f(t), having a fundamental period of 2x and satisfying Dirichlet

conditions (see Bath, 1974, p. 26), can be represented by an infinite series (a Fourier

series):

f(t) = ao + _ (an cos nt + bn sin nt), (1)
n=l

where ao, an, and bn are constants (the Fourier coefficients) which can be represented by:

ao = 2x f(t) dt, (2a)

an = _Ii f(t) cos nt dt, (2b)

and

bn = 1 f(t) Sin nt dt. (2c)

In general, for a function with fundamental period T, the Fourier series and Fourier

coefficients are:

f(t) = ao+ X (anC°S 2T-_ + bn sin 2_O-t)'
n=l

(3a)

T/7.a0 = f(t) dt,

Tj.ra
(3b)
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an= T f(t) cos 2_T dt, (3c)

and

bn = T2-Ira"rn f(t) sinP_T dt" (3d)

It is the calculation of the Fourier coefficients an and bn which is referred to as Fourier

analysis. The value a0 is often referred to as the d.c. (direct current) or steady state

component of f(t), while an and bn are referred to as the a.c. (alternating current)

components.

The Fourier transform (a transformation between the time and frequency domains)

can be used to calculate the Fourier coefficients of a given time function. The direct Fourier

transform is derived in the following (derivation in part from BAth, 1974, pp. 35-37, and

Huang, 1966). The Fourier integral is defined as

= lf0** dco f_ f(k)cos (co(t- k)) dA,f(t) (4)

where k is a dummy integration variable. The cosine and sine transforms of a function f(k)

ale:

a(co) = f-f(k) cos col d_ (5a)

and

b(co)= f_" f(_.)sinco_.d%.

Define a function q)(co) where

sin _(co) = -

from which it follows that

b(co)

(5b)

._/a2(co)+ b2(co) ' (6a)



a(o))

cos _(o)) = _/a2(o)) + b2(0)) (6b)

and
b(o))

tan _o) = - "a(o)" (6c)

Substituting (5a) and (5b) into the Fourier integral (4),

expanded, results in

with the cosine term

lf0_' b(o)) sin tot] do);
f(t) = [a(o)) cos tot + (7)

see Appendix B for derivation. Introducing equations (6) involving ¢(o)) into equation (7)

yields:

fit) : 1_-_'* [a2(o)) + b2(o))]1/2 cos [*(_)+ tot] d_ (8)

and also

f(t) = 2-_xI_ [a2(o)) + b2(o))] 1/2 e i*(°) e i°x do) (9)

(10)

From equations (5), (6), (9), and (10), we can say that

F(O)) = IF(O)){e i*(°) = [a2(o)) + b2(o))] 1/2 e i*(°)

= [a2(o)) + b2(o))]1/2 [cos *(o)) +/sin 0(o))]

L4a (to) b (to)

= a(o)) - i b(o))

b(o))

_/a2(o)) + b2(o))

(II)

(12)

(13)

(14)
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= f_ fit) COS cot dt - i I_ f(t) sin cot dt
g

(15)

= f_ f(t) e -i_t dr. (16)

From the above, the Fourier transform of a time function (direct Fourier transform,

Fourier spectrum, complex Fourier transform) is:

F(CO) = I.__ f(t) e -i_t dt (17)

where

F(co)= a(co)- i b(co)= IF(co)tei O). (18)

The amplitude spectrum is

IF(CO)]= [a2(co)+ b2(co)]I/2 (19)

and the phase spectrum is

oCco) = tan"I- b(co)] (20)

The Fourier spectrum F(CO) of a time function is basically an average of f(t)e J°t over the

length of the function, i.e., an average of the components of f(t) of frequency co. F(CO) and

fit) have the same dimensions.

The real and imaginary parts ofF(c0), a(co) and b(co), respectively, as shown in (14)

and (15), are the cosine and sine transforms of f(t) as in equations (5). Comparison of

these equations to those for the Fourier coefficients, an and bn (2), shows that the

following relations exist:

a(co)"4 anf2 and b(co)"¢ bn/22.... (21)

This can be shown as follows:



f  ,ooso  :f'f 0cos

T_** T I.T/2
"1 Z

(22)

The inverse Fourier transform is

fit) = _ f_ F(O)) e lax do). (23)

This expression can be used to create a time function f(t) from known spectral components

F(o)); therefore, (23) is referred to as the Fourier synthesis of f(0.

B. Fourier Series and Spectral Analysis - Discretization

The definitions and derivations given in the previous section are appropriate for

continuous functions. The calculation of the Fourier transform F(o)) of a given function

f(t) must be approached differently when dealing with a discrete series of observations and

when processing data on digital computers. The formulas used must be transformed into

discrete form as must data which are recorded in analog form. For data recorded digitally,

decisions must be made prior to data acquisition concerning the sampling rate necessary to

avoid aliasing problems, as discussed in the previous section. See B/ith (1974, Chap. 4)

for more details about the equations presented in this section.

In general, a continuous integral may be expressed in discrete form as shown here:

Ax N-1 N-1
y(x) dx -->_ y(nAx) Ax = _ Yn Ax,

n=0 n=0
(24)

where y(x) is a given curve, Ax is the digitizing interval, and N is the total number of

samples.

An integral with infinite integration limits can be approximated using a form of the

trapezoidal rule as follows:
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y(x)dx --->lim • y(x) dx _ __.L__ y(nAx) Ax

• x_ o.X ]-x_ NAx n=0 (25)

Assuming y(0) = y(N), the sum of (25) can be represented as:

N N-1

NJ'n_l y(nAx) or 1_ y(nAx).= Nn=o
(26)

Using the general forms stated above, the Fourier coefficients and Fourier series

can be expressed in discrete form as:

N

ao = 1_ f_., (27a)
N_I

N

a.--zZf,_osNZ_ ,
N,

_=1
(27b)

N

 o_zZe sm
_=1

(27c)

and

f_=a0+_ anCos2N-_+ _ bnsin 2_n_N "
n=l n=l

Applying equation (25) to the direct Fourier transform formula yields:

(27d)

F(to) = f(t) e -lax dt _ fx e-itt_'-

k=l
(28)

Equation (28) can be rewritten as follows for ease in computation:

N

_--I

(29)



Comparison of (29) to the continuous Fourier transform formulas (14-16) and the Fourier

coefficient equations stated above (27) results in:

Fn = 21{an- ibn_ (30)

i.e., the real and imaginary parts of a Fourier transform are one-half the values of the

Fourier coefficients, an and bn, respectively. The inverse Fourier transform is also easily

represented in discrete form:

N

f_. = Z Fn ei(2_nk/N)"

n=l
(31)

C. Power Spectral Density Function - Definition

The power spectral density is a frequency domain function which is often used to

indicate the dominant frequency components present in data (see Bendat and Piersol, 1966,

Chap. 3). Before we can define the power spectral density function, we must first

introduce the autocorrelation function (Robinson and Treitel, 1980, Chapters 3 and 6). The

autocorrelation function for random data gives some indication of the relative amount of

power at different frequencies in the data. The autocorrelation function is the expected

value of the product of a time series and a time shifted version of that series

R(,) = E( f_.fx+, }. (32)

which can also be written as

f(t) f(t+z) dr. (33)

The autocorrelation function is a real and positive valued even function with the maximum

value occurring at x--0. This maximum value corresponds to the mean square value of frO,

and represents the energy or power of the time function.

The power spectral density S(v), associated with the time function f(t), with

frequencies defined over the interval (-_,,,_), is related to the autocorrelation function:

R(0) = E{f2(O} =/_ S(v) dr.
(34)

The power spectral density function represents how the mean square value of a time

functionisdistributedover theinfinitefrequencyrange. S(v)iscalledthetwo-sidedpower

spectraldensityfunctionof f(t)because of the frequency interval(_0%0o)over which itis

9



defined. It can be shown that the two functions in equation (34) form a Fourier transform

pair:

R(x)=f._S(v)e_2nVXdv _ S(v)=f_R(x)e-i2nVXdx. (35)

Because of the nature of the autocorrelation function and properties of the Fourier

tmnsfoma, the power spectral density function is a real and positive valued even function of

frequency. The above transforms may therefore be simplified to:

S(v) = f_ R(x) cos 2_'v'_ dx = 2 _o**R(x) cos 2_vx dx (36)

and

R(x) = 2 _0"* S(v) cos 2_vx dv. (37)

Assuming that R(x) exists, and that it has the Fourier transform S(v), the power

spectral density function can be defined as the direct Fourier transform of the
autocorrelation function:

S(v) = f_ R(x) e -'_w dx. (38)

The physically realizable one-sided power spectral density function G(v) for the frequency

interval (0,0-) is defined as:

G(v) = 2S(v), 0 < v < **. (39)

The correspondence between the one-sided power spectral density function and the
autocorrelation function is:

G(v) = 4 fo R(x) cos 2_vx dx (40)

and

10



R(x) = _0_ G(v) cos 2x'v'c dr.
(41)

D. Power Spectral Density Function - Estimation

To get the power spectral density function into a form that can be computed directly

from observational data, without calculation of the autocorrelation function, we must

consider the estimation of sample parameters (Bendat and Piersol, 1966, Chap. 5). The

estimation of a previously defined parameter will be indicated by a hat (t,) symbol over the

parameter symbol. For example, 8 is an estimate of e, where e is any parameter, such as

the mean value or power spectral density of fx, a sample time series existing for the f'mite

time interval T. Estimators are often defined arbitrarily and may not clearly give a correct

estimation of a given parameter.

Consider the time function f(t); the autocorrelation function R(z) can be estimated

by the sample autocorrelation function R('0, for f(0 existing over the time interval T by

^ _0T_R('0 = _ f(t) f(t+*) dt, 0 < 'c < T. (42)

Assuming that the data exist for time T+% the sample autocorrelation function can be

estimated by

R('c) = 1 f(t) f(t-_) dt,
T 0 <, < T. (43)

The formula for the estimation of the power spectral density function is not defined

directly in terms of the autocorrelation function, but takes into account the fact that the

autocorrelation function is related to the mean square value of a time function. For a time

function f(t) with zero mean, existing over a time interval T, the estimate of the one-sided

power spectral density function CJ(v) describes the time average of f 2(0 in terms of its

frequency components, in the frequency interval (v-(Bd2), v+(Bd2)), where Be is the

frequency bandwidth.

The mean square value of f(t) within the bandwidth Be centered at v is estimated by

---2 fT
W (v,Be)= * l f 2(t,V,Be) dt.

1 J0
(44)

11



Thepowerspectraldensityis defined as

G(v) = lim W2(v'Be) lim f 2(t,v,Be) dt
B.--_o Be T_ ** BeT

Be--_O

= lim _J(v).
T-+** (45)
Be--_O

From equations (44) and (45), the sample estimate for the one-sided power spectral density

function CJ(v) is:

^,G(v) = W (v,Bo) = _.t f _t,v,Be) dt. (46)
Be BeT

The limits in equation (45) must be evaluated to obtain the true function G(v); G(v) is

generally a biased estimate of G(v). The power spectral density function estimate G(v) is

one-slded and is _iat_ to the mathematical two-sided power spectraidensity function

estimate defined for positive and negative frequencies as shown here:

A

S(v) = S(-v) = G(v) (47)
2

The above fo_ula (46) for the estimate of the power spectral density function can

be discretized as follows, taking into account that the bandwidth Be is equivalent to the

Nyquist frequency VN:

T

0(V) = .__I_ ( f 2(t,v,Be) dt

BeT J0 _ ' _
(48a)

N-I N-I

"> BeT BeT _0 (48b)

N-I N-I

_ 1 _of2 = 1 _f2-v--_ (N/2T)N
- _.=0

(48c)

12



N-1

N2 7,=0
(49)

The estimate of the one-sided power spectral density function as defined above is

related to the Fourier spectrum of a time series. Working from the formula for the discrete

Fourier transform of f_, Fn=(an-fl3n)/2, where an and bn are the Fourier coefficients of fx,

the relation can be shown as follows:

F. = 1 (a. - i th0 (50)

F2 --¼(a.-i b_(an+ ibm)=¼(a_+b2) (51a)

= _ f_. COS + f_ sin

g=l
(51b)

)= -_- fk cos fT.cos
N2 7,=1

4_ _ __ _)+ __4__E f_. sin f_. sin (51c)
N2 _.=-1 X=l

(51d)

= N_-_'I_-I 7,=1'_ fx2(c°s2(2N--2_)+ sin2(2N-_))I (51e)

N

N2 Z=I
(52)

Comparing equation (52) with the discrete equation for the estimate of the power spectral
density (49) yields the following relation:

G'_= 2TF 2. (53)

This can be rewritten, tO ease comparison to the Fourier transform of a time series of
interest:

13



12PSDn = Gn = 2T fx e-i2m_ (54)

The units of the power spectral density function are (units of Fourier transform)2/Hz.

E. Application to Residual Acceleration Data

Residual acceleration data have been collected in orbiting space laboratories with a

variety of instruments. The data are typically recorded and distributed to investigators in

discrete form. Sampling rates vary considerably from one experiment to the next,

depending on the specific goal of the experiment. Typical sampling rates range from 12.5

to 500 samples per second. Sampling is often done at higher rates than required to obtain a

particular maximum frequency. For example, if the highest frequency of interest to an

investigator is 100 Hz, data may be collected at 500 samples per second and then lowpass

filtered down to 100 Hz. Such a procedure is useful when investigators are not sure of the

maximum frequencies that compose the process being sampled. This also allows for

higher resolution of frequency domain data than would be available if a sampling rate of

only 200 Hz was used.

Before any specific Fourier analysis can be done on accelerometer data, some pre-

processing is usually required. Pre-processing is performed so that the output represents

as closely as possible the actual residual accelerations experienced at the recording site.

Artificial signals, or noise, can be introduced from a multitude of sources. Manufacturers

of recording devices typically furnish users with specific corrections for deviations from

pure signal caused by temperature variations, instrumental bias, and other factors. Filtering

can also be applied to data to minimize the effects of aliasing, instrumental noise, and other

known noise sources. SpecTficfiltering techniques Will not be discussed here, but

discussions of filtering can be found in most signal processing texts, see Bath (1974),

Bendat and Piersol (1980), and Cadzow (1987).

Once such pre-processing has been applied to residual acceleration data, Fourier

analysis can be applied in order to determine what frequency components are significantly

present. Windows must be chosen of a length appropriate to what minimum frequencies

one wants to see, as discussed in the Sampling Considerations section. Many Fourier

transform algorithms are most efficient when the number of samples is highly composite,

e.g., a power of two, which places further restrictions on the window length. After pre-

processing, the data are assumed free of artificial signals. The results of inadequate
correction for instrumental bias can often be seen in Fourier transformed data. An artificial

bias from the zero point will cause a significant steady state component. Other incorrect

processing, however, is not as easy to identify, but may be manifested as a simple bias, or

as long-term variations or trends.

Most standard Fourier transform computer programs use algorithms based on the

discrete Fourier transform formula

14



N

Fn = N_-___1 f_. e "i(_, (29)

and may give as output the cosine and sine transforms, a(co) and b(co), respectively, or the

amplitude and phase spectra:

F n = _/a2(00) + b2((o)
o. = tan1[ b(co)]

L"
(55)

The Fourier coefficients an and bn which differ from the cosine and sine transforms by a

factor of 2 may also be output, so it is important to completely understand the transform

routine being used. See, for example, Bloomfield (1976, Chap. 4), Elliott and Rao

(1982), and Cadzow (1987, Chap. 4) for information on Fourier transform algorithms.

Given the Fourier transform Fn, the original series may be recreated using the

discrete inverse Fourier transform (31) or it may be synthesized using the relation between

Fn and the Fourier coefficients (30) and the discrete Fourier series equation (27d). Using

equation (54), output from Fourier transform programs can be used to form the power

spectral density function of the time series considered which can be investigated in addition

to, or as an alternative to, the Fourier spectnmL

15



IV. TRANSFORMATION OF COORDINATE AXES

A. Transformation of Coordinate Axes - Theory

Observational time series data are usually recorded in a stationary set of coordinate

axes, which may be located and oriented arbitrarily. Such data can be analyzed in terms of

alternative axes by a relatively simple transformation operation, as long as the

transformation parameters between the axes of interest and the recording axes are known.

One common form of coordinate axes transformation is that which transforms axes

that share a common origin and differ by an angle of rotation 0 about a common axis; see

Figure 1. In the transformation of axes, a known vector g, such as a residual acceleration

measurement, is written in terms of some (primed) coordinate axes which are related to the

original (unprimed) coordinate axes by a known rotation angle. That is, g has some

coordinates in the unprimed axes (gl,g2,g3), and some other coordinates in the new,

primed axes (gl',g2',g3').

0 ,, ,fa2'
S

0

g

al,al'

Figure 1. Axes a '2 and a3' are rotated by an angle of 0 about the al axis. g is some vector
: 2 ........... z .... :_

with coordinates (gl, g2, g3) in the unprimed axes and (gl', g2 r, g3') in the primed axes.

Unit vectors e and e' are marked by short vectors along the coordinate axes.

16



Referringto thevectorg in termsof somenew coordinateaxesis equivalentto a
changein basisof a vector spacefrom an original basisto a new basis(Anton, 1981,
Chap. 4). The vector g is rewritten asg' in terms of the new coordinate axes. g' is

obtained by the application of a transition matrix to g:

g' = Rg.
(56)

R is called the transformation matrix (or rotation matrix). The columns of R are the

components of the old basis vectors relative to the new basis. Consider, for example, the

unit vectors el, e2, el', and e2' of two coordinate axes rotated with respect to one another

by an angle 0. The transition matrix can be constructed by writing el and e2 in terms of

the primed axes:

el = e( cos 0 - e2' sin 0

e2 = el' sin 0 + e2' cos 0
(57)

(58)

which yields the transition matrix:

R=[ cosO sine ]
-sin 0 cos O

This is the transition matrix from unprimed to primed coordinate axes:

g' = Rg. (59)

This can be checked by writing out the elements of g':

gl' = gl cos O + g2 sin 0
(60)

g2' = -gl sin 0 + g2 cos 0

and comparing them to the equations for el' and e2' in terms of the unprimed axes:

el' = el cos O + e2 sin 0

e2' = -el sin 0 + e2 cos 0. (61)

Equations (60) and (61) are equivalent. Equations (61) could be used to create the

transition matrix for primed to unprimed coordinate axes, which would be equal to the

inverse (R-I=R t) of the transition matri," from unprimed to primed coordinate axes. The

process is easily extended to three dimensions (Anton, 1981, Chap. 4).
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In general,for a coordinate system defined by three mutually perpendicular axes,

the transition matrix can be constructed from the direction cosines of the primed axes with

respect to the unprin_ axes:

[Rll Rn R13t

R = |R21 Rzz R_31= Rij (62)
LR31R32R3

where the first subscript denotes a primed axis and the second an unprimed axis (Frederick

and Chang, 1972, Chap. 1). For example, R12 is the cosine of the angle between the al'-

axis and the a2-axis. Hence, the transition of a vector from an unprimed system to a

primed system can be obtained by

gi' = Rij gj. (63)

The use of equation (62) is preferred over that of equation (58) because (62) is more

general and can be used for cases where the rotation is around any line through the origin,

not only around a shared axis.

B. Application to Residual Acceleration Data

The transformation of coordinate axes can be a very useful operation m the analysis

of data. In the case of the analysis of residual acceleration data in conjunction with

experimental data, the ability to consider data in terms of different coordinate axes is a

necessity. Experiments run in orbiting space laboratories, including acceierometer

systems, are often oriented in a manner convenient to space restrictions. This results in a

plethora of experimental coordinate systems for one mission.

While the total acceleration vector has the same magnitude in any coordinate

system, the disturbance level in some particular direction may be of interest to

investigators. Some experiments may be more sensitive to disturbances in one direction

than in another direction. In the analysis of the results of such experiments, it is beneficial
to transform the accelerometer data into a set of axes coincident with the direction of

interest. The magnitude of disturbances in the direction of interest can then be obtained. If

the sources of disruptive disturbances can be identified, and if these disturbances tend to be

uni-directional, such knowledge could be used in the future when positioning experiments

in orbiters.



V. CONCLUSIONS

Variousaspects of residual acceleration data are of interest to investigators. The

mean, variance, and minimum and maximum values can be obtained from the data as

collected in the time domain. Additional information can be obtained by looking at data

from a different perspective. Dominant frequency components can be identified following

a transformation of data into the frequency domain (ampLitude spectrum or power spectral

density) using Fourier transform methods. Information obtained in both the time and

frequency domains can be used by investigators to determine what magnitude disturbances

and what frequency modes are disruptive to their experiments.

The orientation of accelerometer recording axes and of recorded accelerations is

important in the analysis of low-gravity experiments. The ability to refer to acceleration

data in terms of different coordinate axes (such as those of a separate experiment) is useful

in the post-flight analysis of experiments.

Methods such as those discussed here can be implemented in the analysis of

residualaccelerationdata collectedin orbitingspace laboratoriesand used to support

analysisof experimentsrun under low-gravityconditions.
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APPENDIXA- NOMENCLATURE

a.,bn
a(¢0)

b(o)

el, e2

f(t)

F(co)

g

C(v)
i

N

Rij

R(z)

S(v)

T

At

0

,g

V

V_

Fourier coefficients

cosine transform of time function

sine transform of time function

unit vectors

function of time, t

time series with increment _., digitized version of f(0

Fourier transform of f(t)

Fourier transform of fx

vector with coordinates (gl, g2, g3)

one-sided power spectral density function

¢-:-i-
length of time series in number of samples

transformation matrix = R

autocorrelation function of a time series

two-sided power spectral density function

length of time series or function in seconds,

also fundamental period of time series or function

sampling interval

phase spectrum of fit)

angle of rotation between coordinate axes

time shift

cyclic frequency

Nyquist frequency

angular frequency, o_=27t'v

^ over a symbol in the text represents an estimate of the parameter.
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APPENDIX B - DETAILED DERIVATIONS

The derivation of equations (9) and (10) in the main text from the Fourier integral

(4) can be done as follows. Given the Fourier integral

f(t)- _f0=dcoI_ fiX)cos (co(t - _.)) dX, (B1)

the cosine term can be expanded, yielding:

= 1 I0_ dco f_ f(_.) [cos cot cos co_. + sin cot sin co_] dXf(t) (B2)

- 1 f0" dco [f_ [f(_') c°s cot c°s co_" + f(2") sin cot sin co_'] dg 1
(B3)

- 1 Io dco [ I_ f(_') c°s co_' c°s cot d_' + f_ f(_') sin co_' sin cot d_'] (B4)g

= lg fo" [a(co) cos cot + b(co) sin cot] dco.
(B5)

Equation (B5) is the same as equation (7) in the main text. Introducing equations (6) from

the main text for tI_(co), a(co), and b(co) yields:

t**

J0 [a2(co) + b2(co)]l_ cos q_(co) cos tot
f(t)

- [a2(co) + b2(co)]lasin _(co) sincot dco

= .I__"_[a_co)+ b2(co)]_r2[cosO(co)cos cot-sin _(co)sin cot]do)

(B6)

(B7)
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Equation (B8), which is equation (8) in the main text, can b_ rewritten as follows:

f(t) = _ f0" [a_0)) + b2((0)] t_ [e'(*(o) +®0 + e-Z(_®)+ot)]
dr0 (B9)

= "I-2x_O" [a2(cO) + b2(*)]la[ei(@(°).o0] do

+lJ 2g [a2(_) + b2(_)]m [eZ(_®)+o0] d_, (B10)

by reversal of the limits of integration. Manipulation of the exponential terms yields:

d0)

+ [a2(o) + b2(co)]'a[oZOXei_')] do). (B11)

Addition of the two integrals results in equations (9) and (10) of the main text, the inverse
Fourier transform:

f(t)= 2-_ f [a2(O)+ b2((O)]'a[ci.t e,.(.)]do O312)J-

(B13)
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